极地研究 ›› 2017, Vol. 29 ›› Issue (3): 390-398.DOI: 10.13679/j.jdyj.2017.3.390

• 研究论文 • 上一篇    下一篇

基于Elmer/Ice冰盖模型的南极Gamburtsev山脉Lambert冰川冰盖系统的数值模式模拟研究

张良甫1,2, 唐学远2, 杨树瑚1, 徐申远1, 张云1   

  1. 1. 上海海洋大学信息学院, 上海 201306
    2. 中国极地研究中心, 国家海洋局极地科学重点实验室, 上海 200136
  • 收稿日期:2016-04-15 修回日期:2016-05-30 出版日期:2017-09-30 发布日期:2017-09-30
  • 通讯作者: 张良甫
  • 基金资助:

    全球变化研究国家重大科学研究计划(973 计划)(2012CB957702 和2013CBA01804)、国家自然科学基金(41376192,
    41376178, 41506213, 41401489)和上海市自然科学基金(13ZR1445300)资助

Numerical simulations of East Antarctic ice sheet based on the Elmer/Ice model

Zhang Liangfu1,2, Tang Xueyuan2, Yang Shuhu1, Xu Shenyuan1, Zhang Yun1   

  • Received:2016-04-15 Revised:2016-05-30 Online:2017-09-30 Published:2017-09-30
  • Contact: Zhang liangfu

摘要:

在全球变暖的背景下, 东南极冰盖显著地出现降雪增多冰厚增大的现象, 然而由于有关东南极冰盖
的观测数据相对缺乏, 因而很难对东南极冰盖大范围的冰盖动力学、热力学状态细节进行整体性评估。
Dome A 到中山站断面是横穿南极冰盖计划的核心断面之一。该断面穿越的兰伯特(Lambert)冰川上游、甘
布尔采夫(Gamburtsev)冰下山脉和Dome A 区域是南极科学研究的热点区域, 因此具有重要的研究价值。本
研究使用已多次在南极冰盖有过成功模拟应用的三维有限元冰盖模式Elmer/Ice, 对该区域的内部温度场和
速度场进行了模拟, 得到了冰盖的流速场和温度场数据, 并将模拟数据与传统估测数据进行了对比, 发现
两者在总体趋势上吻合。研究表明, 该研究区域冰盖的底部温度大部分达到了压力熔点, 只有少部分靠近内
陆的冰盖底部未达到; 在冰盖内陆区域, 水平速度场非常小, 在靠近冰架区域时, 水平速度场突然增大, 而
垂直速度场只有在冰下地形发生显著波动时, 出现显著变化。在此基础上, 对Elmer/Ice 冰盖模式的应用前
景和需改进的方面进行了探讨。

关键词: 有限元算法, Elmer/Ice 模式, 南极冰盖, 冰盖内部温度, 冰流场

Abstract:

Within the context of global warming, the thickness of the East Antarctic ice sheet has increased according
to recent observations. However, the lack of observations means it is difficult to perform detailed
research on the dynamics and thermodynamics of the ice sheet. The section from Dome A to the Zhongshan
station, which is an important section of the International Trans-Antarctic Scientific Expedition, includes
many important research sites, e.g., the upstream of the Lambert Glacier, the Gamburtsev Mountains, and
Dome A. This study used a three-dimensional finite element model to obtain the inland velocity and temperature
fields of the ice sheet. It was found that the modeled and observational data were identical. The
bottom temperature of most parts of the ice sheet within this area has reached the pressure melting point. The
velocity of the inland ice sheet is small. Near the ice shelf, the horizontal velocity increases abruptly, while
the vertical velocity changes only where the bottom morphology changes rapidly. The prospects for further
application of the Elmer/Ice model and areas requiring improvement are discussed.

Key words: finite element algorithm, Elmer/Ice model, Antarctic ice sheet, temperature, velocity field