极地研究 ›› 2018, Vol. 30 ›› Issue (1): 1-13.DOI: 10.13679/j.jdyj.20160056

• 研究论文 •    下一篇

白令海峡及其邻近海域潮汐潮能数值模拟

李蔷1  高郭平1,2  安佰超1  程灵巧1,2   

  1. 1. 上海海洋大学海洋科学学院, 上海201306
    2. 上海海洋大学大洋渔业资源可持续利用省部共建教育部重点实验室, 上海201306
  • 收稿日期:2016-11-10 修回日期:2017-01-18 出版日期:2018-03-30 发布日期:2018-03-30
  • 通讯作者: 高郭平
  • 基金资助:

    国家自然科学基金(41276197)和南北极环境综合考察与评估专项(CHINARE2014-03-01)资助

Numerical study of the barotropic tide and tidal energy distribution in the Bering Strait and adjacent sea areas

Li Qiang1, Gao Guoping1,2, An Baichao1, Cheng Lingqiao1,2   

  • Received:2016-11-10 Revised:2017-01-18 Online:2018-03-30 Published:2018-03-30
  • Supported by:

    The General Program of National Natural Science Foundation of China

摘要:

基于非结构三角形网格的FVCOM(Finite-Volume Coastal Ocean Model)海洋数值模式, 对白令海峡及
其邻近海域的潮汐、潮能进行数值模拟研究。模拟结果同验潮站和实测海流资料符合良好, 较好地反映了
白令海峡及其邻近海域的潮汐、潮流分布特征和运动状况。根据计算结果绘制了主要分潮的同潮图和潮流
椭圆图, 对该海域潮汐潮流特征进行了系统分析。结果表明, 白令海陆架区、白令海峡和楚科奇海主要以
M2 分潮为主, 而在诺顿湾海域以K1 分潮为主, M2 分潮潮流在白令海陆架东南部及阿纳德尔湾较强, K1 分
潮潮流在诺顿湾潮流达到最大值。在此基础上, 对其潮汐能的传播与耗散进行分析, 结果发现研究海域潮能
通量较小, 主要分潮在研究海域潮能耗散总量约为751 MW, M2 潮能耗散占该总量的52%, K1 潮能耗散占
38%, 潮能进入白令海陆架后, M2 分潮主要在圣劳伦斯岛以南陆架区耗散, K1 分潮主要在诺顿湾海区耗散。

关键词: 白令海峡, 潮汐, 潮汐能, 潮能耗散, 数值模拟

Abstract:

Based on the Finite-Volume Coastal Ocean Numerical Model(FVCOM), a high-resolution hydrodynamic model was established
to study the tides and tidal energetics in the Bering Strait and its adjacent sea areas. The model results were found in
good agreement with tide gauge and current data, and the model simulated the hydrodynamics well. Co-tidal charts and the
tidal current ellipses of the major constituents were drawn and they were discussed using the calculated results. It was shown
that the M2 constituent is dominant in the Bering Sea Shelf, Bering Sea, and Chukchi Sea, whereas the K1 constituent is
dominant in Norton Sound. The M2 constituent tidal current velocity is larger in the area of the southeast Bering Sea shelf and
Anadyr Bay. The maximum tidal current velocity of the K1 constituent appears in Norton Sound. The model output indicated
that the tidal energy flux is small and that the total energy dissipation of the major constituents in the research area is about
751 MW; the M2 tidal energy dissipation accounts for 52% and the K1 tidal energy dissipation accounts for 38%. When the
tide enters the Bering Sea shelf, most of the M2 constituent energy is dissipated to the south of St. Lawrence Island, while
most of the K1 constituent energy is dissipated in Norton Sound.

Key words: Bering Strait, tide, tidal energy, tidal dissipation, numerical simulation